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Type Ia Supernovae and Accelerated Expansion

Study of recently discovered Type Ia Supernovae withz ≥ 0.35 indicates
that the deceleration parameter

q0 ≡ −
ä a

ȧ2
,

wherea(t) is the scale factor, is negative

−1 <∼ q0 < 0 .

[Permutter et al. 1998; Riess et al. 1999]

For an homogeneous and isotropic expanding geometry driven by the vac-
uum energy,ΩV and matterΩM with Eqs. of state of the form

p = ωρ − 1 ≤ ω ≤ 1 ,

it follows from the Friedmann and Raychaudhuri Eqs.

q0 =
1

2
(3ω + 1)ΩM − ΩΛ .

A negativeq0 suggests that adark energy, an “invisible” smoothly dis-
tributed energy density, is the dominant component. This energy density
can have its origin either on a non-vanishingcosmological constant, Λ, or
on a dynamical vacuum energy,“quintessence”, ΩQ (ωQ < −1/3).
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Cosmological Constraints

Observational Parameters

ΩM ' 0.30

ΩΛ,Q ' 0.70

Ωk ' 0

H0 = 100 h km s−1 Mpc−1 , h = 0.71

Big-Bang Nucleosynthesis (BBN)

V (φ) = V0 exp (−λφ)

Ωφ < 0.045 (2 σ) ⇒ λ > 9

[Bean, Hansen, Melchiorri 2001]

Cosmic Microwave Background

ωφ < −0.6 (2 σ) Flat models

Ωφ < 0.39 (2 σ) ⇒ λ ∼> 6

[Efstathiou 1999]
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Figure 1:Concordance Model (latest)
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Some Ideas

- V0 exp (−λφ) (Troublesome on the brane)

[Ratra, Peebles 1988; Wetterich 1988; Ferreira, Joyce 1998]

- V0φ
−α , α > 0 (Fine on the brane for2 < α < 6)

[Ratra, Peebles 1988]

- V0 φ
−α exp (λφ2) , α > 0 [Brax, Martin 1999, 2000]

- V0 [exp (Mp/φ)− 1] [Zlatev, Wang, Steinhardt 1999]

- V0(coshλφ− 1)p [Sahni, Wang 2000]

- V0 sinh−α (λφ)

[Sahni, Starobinsky 2000; Ureña-López, Matos 2000]

- V0[exp (βφ) + exp (γφ)] [Barreiro, Copeland, Nunes 2000]

- Scalar-Tensor Theories of Gravity

[Uzan 1999; Amendola 1999; O.B., Martins 2000; Fujii 2000; ...]

- V0 exp (−λφ)[A + (φ−B)2] [Albrecht, Skordis 2000]

- V0 exp (−λφ)[a +(φ−φ0)
2 + b (ψ−ψ0)

2 + c φ(ψ−ψ0)
2 +d ψ(φ−φ0)

2]

[Bento, O.B., Santos 2002]
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Quintessence and the Brane

Brane-World Scenarios

[L. Randall, R. Sundrum 1999, ...]

- 5-dim AdS spacetime in the bulk with matter confined on a3-brane⇒
4-dimensional Einstein Eqs.

Gµν = −Λgµν +
8π

M 2
P

Tµν +

(
8π

M 3
5

)2

Sµν − Eµν .

[Shiromizu, Maeda, Sasaki 2000]

If Tµν is the energy-momentum of a perfect fluid on the brane, then

Sµν =
1

2
ρ2uµuν +

1

12
ρ(ρ + 2p)hµν ,

ρ, p are the energy density and isotropic pressure of a fluid with4-velocity
uµ, hµν = gµν + uµuν,

Eµν = − 6

k2λ
[ε(uµuν +

1

3
hµν) + Pµν +Qµuν +Qνuµ] ,

so thatk2 ≡ 8π/M 2
P (GR limit λ−1 → 0) and the tensorsPµν andQµ

correspond to non-local contributions to pressure and flux of energy. For a
perfect fluidPµν = Qµ = 0 andε = ε0a

−4.

The 4-dimensional cosmological constant is related to the5-dimensional
one and the3-brane tension,λ:

Λ =
4π

M 3
5

(
Λ5 +

4π

3M 3
5

λ2

)
while the Planck scale is given by

MP =

√
3

4π

M 3
5√
λ
.
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In a cosmological setting, where the3-brane resembles our Universe and
the metric projected onto the brane is an homogeneous and isotropic flat
Robertson-Walker metric, the generalized Friedmann Eq. reads

H2 =
Λ

3
+

(
8π

3M 2
P

)
ρ +

(
4π

3M 3
5

)
ρ2 +

ε0
a4

.

[Binétruy, Deffayet, Ellwanger, Langlois 2000]
[Flanagan, Tye, Wasserman 2000]

ChoosingΛ5 ' −4πλ2/3M 3
5 and dropping the termε0a−4 which quickly

vanishes after inflation:

H2 =
8π

3M 2
P

ρ
[
1 +

ρ

2λ

]
.

Extra brane term:
Beneficial for some quintessence models, but harmful for some others!

[Mizuno, Maeda 2001]
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Generalized Chaplygin Gas

• Radical new idea: change of behaviour of the missing energy density
might be controlled by the change in the equation of state of the back-
ground fluid.

• Interesting case: Chaplygin gas, described by the Eq. of state

p = −A
ρα

,

with α = 1 andA a positive constant.

• From the relativistic energy conservation Eq., within the framework of a
Friedmann-Robertson-Walker cosmology,

ρ =

√
A +

B

a6
,

whereB is an integration constant.

•Smooth interpolation between a dust dominated phase where,ρ '
√
Ba−3,

and a De Sitter phase wherep ' −ρ, through an intermediate regime de-
scribed by the equation of state for“stiff” matter,p = ρ.

[Kamenshchik, Moschella, Pasquier 2001]

This setup admits a brane interpretation via a parametrization invariant
Nambu-Gotod-brane action in a(d+ 1, 1) spacetime. This action leads, in
the light-cone parametrization, to the Poincaré-invariant Born-Infeld action
in a (d, 1) spacetime. The Chaplygin is the only known gas to admit a
supersymmetric generalization.

[Jackiw 2000]
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• Bearing on the observed accelerated expansion of the Universe: Eq. of
state is asymptotically dominated by a cosmological constant,8πG

√
A.

• Inhomogeneous generalization can be regarded as adark energy - dark
matterunification.

[Bili ć, Tupper, Viollier 2001]
[Bento, O.B., Sen 2002]
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A Model (0 < α ≤ 1)

• Lagrangian density for a massive complex scalar field,Φ:

L = gµνΦ∗,µΦ,ν − V (|Φ|2) .

Writing Φ = ( φ√
2m

) exp(−imθ) in terms of its mass,m:

L =
1

2
gµν

(
φ2θ,µθ,ν +

1

m2
φ,µφ,ν

)
− V (φ2/2) .

Scale of inhomogeneities arises from the assumption:

φ,µ << mφ .

• Lagrangian density in this “Thomas-Fermi” approximation:

LTF =
φ2

2
gµνθ,µθ,ν − V (φ2/2) .

• Equations of motion:

gµνθ,µθ,ν = V ′(φ2/2) ,

(φ2√−ggµνθ,ν),µ = 0 ,

whereV ′(x) ≡ dV/dx. Phaseθ can be regarded as a velocity field whether
V ′ > 0, that is

Uµ =
gµνθ,ν√
V ′

,

so that, on the mass shell,UµUµ = 1.
• Energy-momentum tensor takes the form of a perfect fluid:

ρ =
φ2

2
V ′ + V ,

p =
φ2

2
V ′ − V .
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• Covariant conservation of the energy-momentum tensor

ρ̇ + 3H(p + ρ) = 0 ,

whereH = ȧ/a, leads for the generalized Chaplygin gas

ρ =

(
A +

B

a3(1+α)

) 1
1+α

.

Furthermore

d lnφ2 =
d(ρ− p)

ρ + p
,

which, together with the Eq. of state implies that:

φ2(ρ) = ρα(ρ1+α − A)
1−α
1+α .

• GeneralizedBorn-Infeld theory:

LGBI = −A
1

1+α

[
1− (gµνθ,µθ,ν)

1+α
2α

] α
1+α

,

which reproduces the Born-Infeld Lagrangian density forα = 1.

• LGBI can be regarded as ad-brane plus soft correcting terms as can be
seen from the expansion aroundα = 1:

[
1−X

1+α
2α

] α
1+α

=
√

1−X +
X log(X) + (1−X) log(1−X)

4
√

1−X
(1− α)

+
E + F +G

32(1−X)3/2
(1− α)2 +O((1− α)3) ,

whereX ≡ gµνθ,µθ,ν and

E = X(X − 2) log2(X) ,

F = −2X(X − 1) log(X)[log(1−X)− 2] ,

G = (X − 1)2[log(1−X)− 4] log(1−X) .
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• Potential arising from the model

V =
ρ1+α + A

2ρα
=

1

2

(
Ψ2/α +

A

Ψ2

)
,

whereΨ ≡ B−(1−α/1+α)a3(1−α)φ2, which reduces to the duality invariant,
φ2 → A/φ2, and scale-factor independent potential for the Chaplygin gas.

• Intermediate regime between the dust dominated phase and the De Sitter
phase:

ρ ' A
1

1+α +

(
1

1 + α

)
B

A
α

1+α
a−3(1+α) ,

p ' −A
1

1+α +

(
α

1 + α

)
B

A
α

1+α
a−3(1+α) ,

which corresponds to a mixture of vacuum energy densityA
1

1+α and matter
described by the “soft” equation of state:

p = αρ .
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Dust

p = p = −  
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Figure 2:Cosmological evolution of a universe described by a generalized Chaplygin gas equation of state.

Treatment of the Inhomogeneities

• Second equation of motion admits as first integral a position dependent
functionB(~r), after a convenient choice of comoving coordinates where
the velocity field is given byUµ = δµ0/

√
g00 . An induced induced3-metric

γij =
gi0gj0
g00

− gij

with determinantγ ≡ −g/g00 can be built after choosing the proper time,
dτ =

√
g00dx

0.
For the relevant scales, functionB(~r) can be regarded as approximately
constant, hence
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ρ =

(
A +

B

γ(1+α)

) 1
1+α

.

Zeldovich method for considering inhomogeneities can be implemented
through the deformation tensor:

Dij = a(t)

(
δij − b(t)

∂2ϕ(~q)

∂qi∂qj

)
,

where~q are generalized Lagrangian coordinates and

γij = δmnD
m
i D

n
j ,

h being a perturbation

h = 2b(t)ϕ,i
i ,

with b(t) parametrizing the time evolution of the inhomogeneities and

ρ ' ρ̄(1 + δ) , p ' −A
ρ̄α

(1− αδ) ,

ρ̄ being given by the evolution Eq. of the energy density and the density
contrast,δ, by

δ =
h

2
(1 + w) ,

with

w ≡ p

ρ
= − A

ρ̄1+α
.

The induced metric leads to the(0− 0) component of the Einstein Eqs:

−3
ä

a
+

1

2
ḧ +Hḣ = 4πGρ̄[(1 + 3w) + (1− 3αw)δ] ,

where the unperturbed part corresponds to the Raychaudhuri Eq.

−3
ä

a
= 4πGρ̄(1 + 3w) .
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It follows from the Friedmann Eq. for a flat space section

H2 =
8πG

3
ρ̄ ,

that the Einstein’s Eqs. can be written as a differential equation forb(a):

2

3
a2b′′ + (1− w)ab′ − (1 + w)(1− 3αw)b = 0 ,

where the primes denote derivatives with respect to the scale-factor.
From the observational constraints

w(a) = − ΩΛa
3(1+α)

1− ΩΛ + ΩΛa3(1+α)
.

•We numerically integrate the Eq. forb for different values ofα using
aeq = 10−4 for matter-radiation equilibrium,a0 = 1 at present andb′(aeq) =

0 as initial condition.

• Generalized Chaplygin scenarios start differing from theΛCDM only
recently (z ∼< 1) and yield a density contrast that closely resembles, for
any value ofα 6= 0, the standard CDM before the present.

It can be seen that for any value ofα, b(a) saturates as in theΛCDM.
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• Ratio betweenδ in the Chaplygin and theΛCDM scenarios is given by:

δChap
δΛCDM

=
bChap
bΛCDM

1− ΩΛ + ΩΛa
3

1− ΩΛ + ΩΛa3(1+α)
,

meaning that their difference diminishes asa evolves.

Evolution ofδ as a function ofa can be obtained from numerical integra-
tion. We find that for any value ofα the density contrast decays for largea
(as theα = 1 case).

[Bili ć, Tupper, Viollier 2001]

[Fabris, Gonçalves, Souza 2001]

The difference in behaviour of the density contrast between a Universe
filled with matter with a“soft” or “stiff” Eqs. of state can be seen in the
Figure. The former resembles more closely theΛCDM.
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Figure 3:Evolution ofb(a)/b(aeq) for the generalized Chaplygin gas model, for different values ofα, as compared with CDM
andΛCDM.

Location of CMBR peaks for the generalized Chaplygin gas

• CMBR peaks arise from acoustic oscillations of the primeval plasma just
before the Universe becomes transparent. The angular momentum scale of
the oscillations is set by the acoustic scalelA, which for a flat Universe is
given by

lA = π
τ0 − τls
c̄sτls

,

whereτ0 andτls are the conformal time at present and at the last scattering
andc̄s is the average sound speed before decoupling.

The assumptions in our subsequent calculations are as follows:
Scale factor at presenta0 = 1, scale factor at last scatteringals = 1100−1,
h = 0.65, density parameter for radiation and baryons at presentΩr0 =

9.89 × 10−5, Ωb0 = 0.05, average sound velocitȳcs = 0.52, and spectral
index for the initial energy density perturbations,n = 1.
To computelA we rewrite the Chaplygin equation in the form
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ρch = ρch0

(
As +

(1− As)

a3(1+α)

)1/1+α

,

whereAs ≡ A/ρ1+α
ch0 andρch0 = (A+B)1/1+α. The Friedmann eq. becomes

H2 =
8πG

3

[
ρr0
a4

+
ρb0
a3

+ ρch0

(
As +

(1− As)

a3(1+α)

)1/1+α
]
,

where we have included the contribution of radiation and baryons.
Several important features are worth remarking:
(i) 0 ≤ As ≤ 1 (ii) For As = 0 the Chaplygin gas behaves as dust and, for
As = 1, it behaves like as a cosmological constant. Forα = 0, the Chap-
lygin gas corresponds to aΛCDM model. Hence, for the chosen range of
α, the generalised Chaplygin gas is clearly different fromΛCDM. Another
relevant issue is that the sound velocity of the fluid is given, at present, by
αAs and thusαAs ≤ 1. Moreover using that

ρr0
ρch0

=
Ωr0

Ωch0
=

Ωr0

1− Ωr0 − Ωb0
,

and

ρb0
ρch0

=
Ωb0

Ωch0
=

Ωb0

1− Ωr0 − Ωb0
,

we obtain

H2 = Ωch0H
2
0a
−4X2(a) ,

with

X(a) =
Ωr0

1− Ωr0 − Ωb0
+

Ωb0 a

1− Ωr0 − Ωb0
+ a4

(
As +

(1− As)

a3(1+α)

)1/1+α

.

From the fact thatH2 = a−4
(
da
dτ

)2
, we get

dτ =
da

Ω
1/2
ch0H0X(a)

,
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so that

lA =
π

c̄s

[∫
0

1 da

X(a)

(∫
0

als da

X(a)

)−1

− 1

]
.

In an idealised model of the primeval plasma, there is a simple relation
between the location of them-th peak and the acoustic scale, namely
lm ≈ mlA. However, the location of the peaks is slightly shifted by driving
effects and this can be compensated by parameterising the location of the
m-th peak,lm as

lm ≡ lA (m− ϕm) .

It is not possible in general to analytically derive a relationship between
the cosmological parameters and the peak shifts, but one can use fitting
formulae. In particular, forn = 1 andΩb0h

2 = 0.02 one finds that:

ϕ1 ≈ 0.267
( rls

0.3

)0.1

,

whererls = ρr(zls)/ρm(zls).

[Doran, Lilley, Schwindt, Wetterich 2000]

[Hu, Fukugita, Zaldarriaga, Tegmark 2001]

According to thedark energy - dark matterunification hypothesis, ρch will
behave as non-relativistic matter at the last scattering and hence

ρch ≈
ρch0
a3

(1− As)
1/1+α ,

from which follows

rls =
Ωr0

Ωch0

a−1
ls

(1− As)1/1+α
'

Ωr0a
−1
ls

(1− Ωr0 − Ωb0)(1− As)1/1+α
.
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We showl1 as a function ofα for different values ofAs, for the observa-
tional bounds onl1 as derived from BOOMERANG (dashed lines)

l1 = 221± 14 .

and Archeops data (full lines)

l1 = 220± 6 .

Notice that, sinceαAs ≤ 1, for a specific value ofAs curves end where
this relation gets saturated,αAs = 1.

• It is very difficult to extract any constraints from the position of the sec-
ond peak since it depends on too many parameters, hence it is disregarded.
As for the shift of the third peak, it turns out to be a relatively insensitive
quantity

ϕ3 ≈ 0.341 .

[Doran, Lilley, Wetterich 2001]

We showl3 as a function ofα for different values ofAs, in relation to the
current lower and upper bounds onl3 as derived from BOOMERANG data

l3 = 825+10
−13 .

We see thatl1 andl3 put rather tight constraints on the parameters of the
model,α andAs.
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Figure 6:WMAP Power Spectrum
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Figure 7:Dependence of the position of the CMBR first peak,l1, as a function ofα for different values ofAS . Also shown are
the observational bounds onl1 from BOOMERANG (dashed lines), and Archeops (full lines).
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WMAP Constraints

l1 = 220.1± 0.8 l2 = 546± 10 ld1 = 411.7± 3.5

Main conclusions:

1. Assuming WMAP priors, the Chaplygin gas model,α = 1 , is incom-
patible with the data and so are models withα ∼> 0.6

2. For α = 0.6, consistency with data requires for the spectral tilt,ns >

0.97, and that,h ∼< 0.68

3. TheΛCDM model barely fits the data forns ' 1 (WMAP data yields
ns = 0.99 ± 0.04) and for thath > 0.72. For low values ofns, ΛCDM
is preferred to the GCG models. For intermediate values ofns, the GCG
model is favoured only ifα ' 0.2

These results are consistent with the ones obtained byAmendola et al.
2003using the CMBFast code. Furthermore, we find:

4. In the (As, α) plane the variation ofh within the boundsh = 0.71+0.04
−0.03

does not lead to important changes in the allowed regions, as compared to
the valueh = 0.71. However, these regions become slightly larger as they
shift up-wards forh < 0.71; the opposite trend is found forh > 0.71

5. Our results are consistent with bounds obtained using BOOMERanG
data for the third peak and Archeops data for the first peak as well as results
from SNe Ia and age bounds, namely0.81 ∼< As ∼< 0.85 and0.2 ∼< α ∼< 0.6

6. If one abandons the constraint onh arising from WMAP, then the Chap-
lygin gas caseα = 1 is consistent with the peaks location, ifh ≤ 0.64
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Supernovae Constraints

SNe Ia data sets:

Tonry at al. (2003)230points

Barris at al. (2004)23points

Riess at al. (2004) - Gold sample (HST)143 (157)points

• Apparent magnitude:

m(z) = M + 5 log10DL(z)

whereDL = H0
c dL(z), dL(z) = r(z)(1 + z) is the luminosity distance and

r(z) the comoving distance

r(z) = c

∫ z

0

dz
′

H(z′)

• Absolute magnitude (taken to be constant for all SNe Ia):

M = M + 5 log10

(
c/H0
1 Mpc

)
+ 25

We consider points withz > 0.01 and with host galaxy extinctionAv >

0.5. This yields194points. The Gold and HST data sets were studied in
Bento et al., Phys. Rev. D71 (2005) 063501.

•SNe Ia data points are listed in terms oflog10 dL(z) and the errorσlog10 dL
(z)

• The best fit model is obtained by minimizing the quantity

χ2 =

194∑
i=1

[
log10 dLobs(zi)− 0.2M′ − log10 dLth(zi; cα)

σlog10 dL
(zi)

]2

whereM′
= M−Mobs denotes the difference between the actualM and

the assumed valueMobs in the data. Due to the uncertainty arising from the
peculiar motion at low redshift one adds∆v = 500 km s−1 to σ2

log10 dL
(z)

σ2
log10 dL

(z) → σ2
log10 dL

(z) +

(
1

ln 10

1

DL

∆v

c

)2
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Figure 11:Confidence contours in theα−As parameter space for flat unified GCG model. The solid and dashed lines represent
the68% and95% confidence regions, respectively. The best fit value used forM′

is−0.033.

1 2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

A
s

χ2
min

 = 198.23 

Best fit values: 

A
s
 = 0.936 

α = 3.75 
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Structure Formation

•Unphysical oscillations or exponential blow-up in the matter power spec-
trum at present in the unified model?

[Sandvik, Tegmark, Zaldarriaga, Waga 2004]

• Solution: Decompose the energy density into a pressureless dark matter
component,ρdm, and a dark energy component,ρX, dropping the phantom
component

[M.C. Bento, O. B., A.A. Sen 2004]

Introduce the redshift dependence in the pressure and the energy density
(a0 = 1)

pch = − A[
A +B(1 + z)3(1+α)

] α
1+α

ρch =
[
A +B(1 + z)3(1+α)

] 1
1+α

Equation of state:

w =
pch
ρch

=
pX

ρdm + ρX
=

wXρX
ρdm + ρX

.

where

ρX = − ρdm

1 + wX
[
1 + B

A(1 + z)3(1+α)
]

As ρX ≥ 0 thenwX ≤ 0 for early times (z � 1) andwX ≤ −1 for future
(z = −1). Hence, one concludes thatwX ≤ −1 for the entire history of the
universe. The casewX < −1 corresponds to the so-called phantom-like
dark energy, which violates the dominant-energy condition and leads to an
ill defined sound velocity. If one excludes this possibility:
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ρ = ρdm + ρΛ

where

ρdm =
B(1 + z)3(1+α)[

A +B(1 + z)3(1+α)
] α

1+α

ρΛ = −pΛ =
A[

A +B(1 + z)3(1+α)
] α

1+α

from which one obtains the scaling behaviour

ρdm
ρΛ

=
B

A
(1 + z)3(1+α)

• The entanglement of dark energy and dark matter is such that the energy
exchange, which is described by

ρ̇dm + 3Hρdm = −ρ̇Λ ,

implies that thedominance of dark energyatz ' 0.2 is correlated with the
growth of structure!

• The linear perturbation eq. for dark matter in the Newtonian limit:

∂2δdm
∂t2

+

[
2
ȧ

a
+

Ψ

ρdm

]
∂δdm
∂t

[
4πGρdm − 2

ȧ

a

Ψ

ρdm
− ∂

∂t

[
Ψ

ρdm

]]
δdm = 0

whereΨ = − 1
8πGΛ̇ andΛ = 8πGρΛ. For Ψ = 0, i.e. no energy transfer,

one recovers the standard equation for the dark matter perturbation in the
ΛCDM case.

The study of evolution ofδdm allow obtaining the behaviour of thebias
parameter, b ≡ δb/δdm, of thelinear growth functionD(y) ≡ δ/δ0, where
y = ln(a) and of the so-calledgrowth exponentm(y) = D

′
(y)/D(y)

Observational values obtained from the 2DF survey for the bias and the
distortion parameter,β ≡ m/b, in the context of theΛCDM model

β = 0.49± 0.09 , b = 1.04± 0.14

imply thatm = 0.51± 0.11 andα ∼ 0.1− 0.15.
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Figure 13:Ωdm andΩΛ andΩb as a function of redshift. We have assumedΩdm0 = .25, ΩΛ0 = 0.7 andΩb0 = 0.05 and
α = 0.2.
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Figure 14: δdm as function of scale factor. The solid, dotted, dashed and dash-dot lines correspond toα = 0, 0.2, 0.4, 0.6,
respectively. We have assumedΩdm = 0.25,Ωb = 0.05 andΩΛ = 0.7.
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Figure 15: The growth factorm(y) as a function of scale factor a. The solid, dotted, dashed and dash-dot lines correspond
toα = 0, 0.2, 0.4, 0.6, respectively. We have assumedΩdm = 0.25,Ωb = 0.05 andΩΛ = 0.7.
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Figure 16: The biasb as a function of the scale factor,a. The solid, dotted, dashed and dash-dot lines correspond toα =
0, 0.2, 0.4, 0.6, respectively. We have assumedΩdm = 0.25,Ωb = 0.05 andΩΛ = 0.7.
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Figure 17:Contours for parametersb andm in theΩm − α plane. Solid lines are forb whereas dashed lines are form. For b,
contour values are0.98, 0.96, ..., 0.9 from left to right. Form, contour values are0.6, 0.65, ..., 0.8 from left to right.
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Figure 18:Joint68% CL confidence regions for Model II using both SNe, gravitational lensing statistics and CMBR constraints.

34


